Scientists at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland recently unveiled a flexible spinal implant called the electronic dura (or e-Dura) that they say may greatly improve spinal injury rehabilitation. In a paper published earlier this month in the journal Science, the EPFL team said because of its flexibility, the next-generation implant lasts longer (up to two months) and causes much less damage than traditional implants.
These latest results continue a line of research into regenerative medicine by EPFL scientists led by Dr. Grégoire Courtine and Dr. Stéphanie P. Lacour. In 2012, this same group published stunning results showing rats with paralyzing spinal cord injuries were able to regain the ability to walk, run, and even climb.
These latest results continue a line of research into regenerative medicine by EPFL scientists led by Dr. Grégoire Courtine and Dr. Stéphanie P. Lacour. In 2012, this same group published stunning results showing rats with paralyzing spinal cord injuries were able to regain the ability to walk, run, and even climb.
When the spinal cord is severely injured, it results in loss of control over the part of the body below the point of injury.
The EPFL team learned that an injured spinal cord could be reactivated in rats with a specific combination of drugs and electrical stimulation. The drugs, called monoamine agonists, activate the same receptors as neurotransmitters in healthy subjects. Exposing the injured spinal cord to these drugs, along with mild electrical stimulation, activated nerve cells in the spinal column and produced movement in the paralyzed animal.
Early on, the brain still wasn’t communicating with the area below the injured spinal cord, and the movement was involuntary. Over time, however, as the animals (supported by a robotic harness) gained confidence in their ability to walk again, the scientists noted a fourfold growth of new nerves in the spinal cord—the nerve growth eventually restored communication between the brain and the injured area of the spine.
As you can imagine, the researchers were eager to take these findings to the clinic to see if they might have the same success with humans. In preparation for clinical trials, however, they came up against another hurdle—the need for a long-term spinal implant to deliver the chemical and electrical stimulation needed to initiate healing.
They hope e-Dura can satisfy their needs.
The EPFL team learned that an injured spinal cord could be reactivated in rats with a specific combination of drugs and electrical stimulation. The drugs, called monoamine agonists, activate the same receptors as neurotransmitters in healthy subjects. Exposing the injured spinal cord to these drugs, along with mild electrical stimulation, activated nerve cells in the spinal column and produced movement in the paralyzed animal.
Early on, the brain still wasn’t communicating with the area below the injured spinal cord, and the movement was involuntary. Over time, however, as the animals (supported by a robotic harness) gained confidence in their ability to walk again, the scientists noted a fourfold growth of new nerves in the spinal cord—the nerve growth eventually restored communication between the brain and the injured area of the spine.
As you can imagine, the researchers were eager to take these findings to the clinic to see if they might have the same success with humans. In preparation for clinical trials, however, they came up against another hurdle—the need for a long-term spinal implant to deliver the chemical and electrical stimulation needed to initiate healing.
They hope e-Dura can satisfy their needs.